Tech News, Magazine & Review WordPress Theme 2017
  • Home
  • Supply Chain Updates
  • Global News
  • Contact Us
  • Home
  • Supply Chain Updates
  • Global News
  • Contact Us
No Result
View All Result
No Result
View All Result
Home Supply Chain Updates

BMW explores quantum computing to boost supply chain efficiencies

usscmc by usscmc
January 27, 2021
BMW explores quantum computing to boost supply chain efficiencies
Share on FacebookShare on Twitter

BMW has become the latest company to take interest in the behavior of particles of matter taken at their smallest, quantum scale – or rather, in how those particles could generate the leaps in productivity that are expected to come with the advent of quantum-based technologies. 

The German automotive giant is piloting the use of quantum computing tools to optimize the company’s supply chains for car manufacturing, and has now unveiled promising results from its early trials. 

The quantum experiments were carried out as part of a new collaboration between BMW and US multinational Honeywell, which recently took its first steps on the quantum stage by making a trapped-ion quantum computer available to its customers over the cloud.  

BMW is also working with a Singapore-based startup, Entropica Labs, which designs software that can be run on quantum computing platforms such as the one offered by Honeywell. 

“The BMW Group is always exploring new technologies to further enhance our operations,” said Julius Marcea, Head of IT at BMW Group.  “We are excited to investigate the transformative potential of quantum computing on the automotive industry and are committed to extending the limits of engineering performance.” 

Underpinning the trials is an effort to boost the efficiency of the car manufacturer’s supply chain, which is riddled with complex logistics to keep materials, good and services flowing smoothly between wholesalers, distributors, retailers, and ultimately customers. 

To avoid as many glitches and disruptions as possible, it is necessary to make sure that the right products are always at the right place and at the right time; that’s a data-heavy task, stocked with ever-changing conditions and factors. 

Reaching the most optimal configuration for supply chains is an equation that is often too difficult for classical computers to solve well, or in a reasonable amount of time. But quantum computers, which leverage the properties of quantum mechanics, are expected to be able to take on the most complex problems. They do so by running several calculations at once thanks to a special quantum state that is taken on by tiny particles inside the computer called qubits. 

Building a quantum program requires a team that is qualified to develop the algorithms that can run on quantum computers, which is where Entropica Labs’ experts came in. The researchers analyzed the potential for quantum to play a role in BMW’s supply chain and assessed the performance of Honeywell’s H1 quantum system for the optimization problem at stake.  

Entropica Labs’ team used a known quantum algorithm, called a recursive quantum approximate optimization algorithm (RQAOA), which is suited to the optimization problems that are central to logistics and supply chains. The RQAOA was then run on the H1 quantum system, a ten-qubit piece of hardware that was unveiled by Honeywell last year, and pitched as one of the most high-fidelity quantum technologies available today. 

Given the small number of qubits currently available to run quantum programs, the technology was trialed on a small-scale problem that could also be solved by classical means.  

“Since we only have small quantum computers at the moment, we are obviously not doing anything that couldn’t be achieved much more quickly and cheaply on a classical computer,” Ewan Munro, the CTO of Entropica Labs, told ZDNet. 

“The motivation is more to analyze the results from the quantum device and to use that information to help us build a strategy for moving forward,” he added. 

The scientists were able to compare how the experiment performed compared to classical solutions, with seemingly promising results: Honeywell’s quantum hardware was shown to be competitive against a similar experiment run with a simulator, which uses classical devices to predict how qubits will react to different operations. 

On the software side, the quantum algorithm also performed comparably to a classical algorithm called the Karmarkar-Karp heuristic. For the scientists, this suggests that once quantum systems gain enough qubits to support more complex problems, larger versions of the RQAOA could outperform leading classical algorithms.  

BMW’s experiments with Entropica Labs on Honeywell’s hardware, therefore, rather constituted a proof-of-concept that was useful in validating the possibility of value being drawn from quantum technologies in the future. “The idea was to probe what quantum hardware can do today, and compare the results to what you would get using classical algorithms,” said Munro.  

“The ultimate goal is to understand if and when we might reach a possible quantum advantage,” he continued. “We think we are still some years away from quantum advantage for real-world supply chain problems, primarily because it will take time for the hardware to mature to the required level.” 

Honeywell’s ten-qubit H1 system only marks the start of the company’s pledge to launch additional generations of hardware with increased capability. It might be a few years, however, before quantum computing translates into observable business impact. 

“Customers engage with us because they are doing proof-of-concept algorithms,” Tony Uttley, president of Honeywell quantum solutions, told ZDNet. “Nobody is talking about millions of qubits right now. We’re talking about tens of qubits. End-user organizations are getting the proof-of-concept in place right now to showcase what you can do with quantum computers today, and it sets them up to take advantage of them as they increase in capability.” 

Another heavy investor in quantum technologies, IBM recently unveiled a roadmap towards a million-qubit quantum system. The company expects that by 2023, it will be able to provide IBM customers with a thousand-qubit-strong computer, which could already see the start of value creation for some use-cases. 

usscmc

usscmc

No Result
View All Result

Recent Posts

  • How Hapag Lloyd captured a major market share in the Container Shipping Industry in USA
  • Why USA’s East Coast is the Favorite Destination for Manufacturing Companies
  • How Trade Relations Between the USA and UK Improved After Keir Starmer Became Prime Minister
  • Tips and Tricks for Procurement Managers to Handle Their Supplier Woes
  • The Crazy Supply Chain of Walmart Spanning Across the Globe

Recent Comments

  • Top 5 Supply Chain Certifications that are in high demand | Top 5 Certifications on Top 5 Globally Recognized Supply Chain Certifications
  • 3 Best Procurement Certifications that are most valuable | Procurement Newz on Top 5 Globally Recognized Supply Chain Certifications

Archives

  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • September 2019

Categories

  • Global News
  • Supply Chain Updates

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
  • Antispam
  • Contact Us
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms of Use

© 2025 www.usscmc.com

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT
No Result
View All Result
  • Home
  • Supply Chain Updates
  • Global News
  • Contact Us

© 2025 www.usscmc.com