Tech News, Magazine & Review WordPress Theme 2017
  • Home
  • Supply Chain Updates
  • Global News
  • Contact Us
  • Home
  • Supply Chain Updates
  • Global News
  • Contact Us
No Result
View All Result
No Result
View All Result
Home Supply Chain Updates

Optimize processing with a laser tube cutting machine

usscmc by usscmc
November 18, 2019
Optimize processing with a laser tube cutting machine
Share on FacebookShare on Twitter

Laser tube cutting Mazak optonics

With tube cutting, the operator needs to be aware of the other side of the tube and the affect the laser will have on it while processing the cut, particularly as it relates to thermal expansion.

Laser cutting technology has significantly moved the needle for fast processing of flat sheet metal. But what about cutting tube and pipe? Today’s laser tube cutting machines are specifically designed to cut a large range of mill-length tube and pipe, whether round, square, rectangular, or triangular. Some of the more advanced options can process I- and H-beams, C-channel, angle iron, and other user-defined shapes.

Cutting tube and pipe using a laser is similar in a lot of ways to processing flat sheet metal. A lot of tube is made from the same material as the flat metal is made from, as it starts out flat before it is formed into the tube. However, there are some significant differences between the two. With tube cutting, the operator needs to be aware of the other side of the tube and the effect the laser will have on it while processing the cut, particularly as it relates to thermal expansion.

When cutting flat material, a laser will throw off sparks, debris, and slugs, which generally land on the table or into a chip bucket. But with laser tube cutting, those sparks, debris, and slugs often fall inside of the tubing. That could be an issue for some fabricators, which is why they need to be aware of this and learn how to deal with it effectively. It’s always important to keep in mind how to properly manage scrap material, dross, and slugs.

To deal with the sparks going inside the tube, fabricators can precoat the inside of the tube with an antispatter to help prevent the sticking of the dross to the inside of the tube. They can also use a sacrificial tube on the inside to absorb the laser beam to prevent heat buildup and damage to the other side. In some cases, fabricators can opt for a secondary process to clean the inside of the tube once it’s been cut. This all depends on the fabricator’s industry standard and application.

Tube Cutting Basics

There are some significant differences between laser cutting tube versus flat sheets. Operators need to be aware that cutting tube requires an ideal finished cut so the machine can move on to the next part. With laser cutting sheet metal, the machine is not affected by the previous part and can simply move on to the next sheet regardless of the quality of cut. It is important that the last cut of the part be of a quality to allow the finished part to be separated from the unprocessed material stick. If the finished part does not separate it can present a challenge for the unloading process and can also present a challenge for the start of the next part if the previous part does not separate properly from the raw material.

One of the most basic things operators can do to ensure that the machine is efficiently cutting tube is to visually inspect the cut to make sure it has been done properly. With end cuts, the last cut of the part will determine if the part can be separated from the raw material stick, which makes it necessary to ensure good cut quality. If the last cut of the finished part does not allow for the separation, the machine cannot continue to the next part.

Those who have experience cutting tube know that the tubes themselves are not always straight. For those just entering the laser tube cutting sphere, it is certainly something that needs to be considered from both the operator and programmer perspectives.

When ordering tube, shops may opt for a less expensive material, and this will directly correlate with the quality of the final product. Fabricators need to be concerned with whether or not the tubing is straight. If it is not straight, they need to determine if the machine has the capability to correct for non-straight tubing. While it is not only the machine operator’s duty to know tube straightness, it is also the programmer’s. When an engineer has designed a part, programmers, supervisors, and managers all have to take into account how well the drawing matches up to the material being used and the accuracy of the cutting processes.

For example, if a shop is working with a 4- by 4-in. square tube in mild steel, the material will typically have corner radii. Before cutting, it is important to know how accurate the corner radii are. This is especially relevant when it comes to programming, which needs to ensure that the digital print matches the reality of what is being cut on the shop floor. If the material and the digital print are not the same, the end result may not be as expected. For example, bevels may not meet up because the corner radii are different. There are loose standards and tolerances on standard tubing. Many advanced laser tube cutting machines include compensations for feature overrides like a corner radius to ensure the part can still be cut correctly.

Weld Seam

Infrequently, some parts require the weld seam to be located on a certain side, or its location is sensitive to the overall design. In these instances, laser tube cutting machines can include a seam detector that will locate the seam so cutting can be adjusted accordingly. This is particularly significant in parts where bearings are being placed in the tube, if tapped holes will be introduced, or when another part needs to attach to that area. However, in today’s material market, shops have the option to spend a little more money and purchase tube and pipe with the seam removed so it no longer is an issue.

tube laser features mazak optonics

Tube lasers can be used to cut shapes and features that can’t be made with other methods. The more features on a part, the faster the return on investment a fabricator will get from the tube laser.

Maximizing Efficiency

With many systems available on the market, finding the right laser tube cutting machine requires some thought. Tube lasers are based on the size it can handle, so a shop needs to know what tube dimensions it is expecting to cut. This will ensure that it can cut the largest-diameter tube the shop will be working with.

Questions a fabricator needs to answer are, first, what tube size will be cut, how much power is needed, and the length of the tube. The answers will determine the size of the machine needed.

How long lengths of tube are supported is important. Finding a tube laser system that has proper support for the raw stick can make all the difference in part quality. The more chucks on a system, the greater the accuracy will be when the tube is rotating. The ability to support tubing on both sides of the cut is important because inaccuracies can occur if the tube is hanging and unsupported. Having a third and fourth chuck will help hold and help with accuracy of a part. Also, with four chucks, chuck one and chuck two can be cutting raw material while chuck three and chuck four are removing the finished part away from the cutting area and unloaded, enabling higher throughput.

Most tube laser machines today have the capability to tilt the head to allow for bevel cutting and countersinks. A machine with a 3D torch maximizes flexibility and the range of movement, which expands the range of applications possible. Fabricators are able to cut any desired angle for weld prep plus achieve the highest accuracy for easy assembly fit-ups.

Automation is also something that can make laser tube cutting more efficient. Something as simple as raw material length detection on the machine can measure the length of stick using sensors for better material management. Features like automatic loading and unloading systems, seam detection, and spatter extraction can increase a machine’s efficiency for producing quality parts.

Done-in-One

Some misconceptions about tube lasers are common. Many operators are unaware of how much faster it is to cut tube on a laser cutting system than with other methods. A laser tube cutting machine is expensive, and some fabricators don’t want to invest in one just to cut raw stick that could be cut faster on a band saw. Some shops don’t want to use a band saw because it tends to be less accurate than a tube laser and the tube needs post-processing such as grinding.

But tube lasers can be used to cut shapes and features that can’t be made with other methods. These features will help fabricators expand capabilities to take on a wider range of customer projects. The more features on a part, the faster the return on investment a fabricator will get from the tube laser.

A laser tube cutting machine acts as a done-in-one system by performing a number of processes, including material handling, cutting, machining, drilling, tapping, and punching. This eliminates the operator’s need to work through multiple steps moving from machine to machine.

Garrett Peterson is a senior application engineer at Mazak Optonics Corp., 2725 Galvin Court, Elgin, Ill. 60124, 847-252-4500, www.mazakoptonics.com.

Photos courtesy of Mazak Optonics.

mazak optonics tube laser 3d torch

Most tube laser machines today have the capability to tilt the head to allow for bevel cutting and countersinks. A machine with a 3D torch maximizes flexibility and the range of movement.

usscmc

usscmc

No Result
View All Result

Recent Posts

  • Sustainable Packaging Solutions: Reducing Waste in US Supply Chains
  • The Future of US Shipping and Freight Transportation
  • The Tariff Tango: How US-China Trade Tensions are Reshaping Supply Chains
  • Inside the Icy World of US Cold Chain
  • US Ports: Gateways to Global Trade

Recent Comments

  • Top 5 Supply Chain Certifications that are in high demand | Top 5 Certifications on Top 5 Globally Recognized Supply Chain Certifications
  • 3 Best Procurement Certifications that are most valuable | Procurement Newz on Top 5 Globally Recognized Supply Chain Certifications

Archives

  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • September 2019

Categories

  • Global News
  • Supply Chain Updates

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org

slot gacor slot slot gacor 2023 slot 2023 slot gacor terbaru slot gacor terpercaya slot gacor slot gacor slot slot gacor 2023 slot 2023 slot gacor terbaru slot gacor terpercaya slot gacor slot gacor slot slot gacor 2023 slot 2023 slot gacor terbaru slot gacor terpercaya slot gacor

Pages

  • Home
  • Terms of Use
  • Privacy Policy
  • Disclaimer
  • Antispam
  • Contact Us

Categories

  • Global News
  • Supply Chain Updates
slot gacor slot slot gacor 2023 slot 2023 slot gacor terbaru slot gacor terpercaya slot gacor slot gacor slot slot gacor 2023 slot 2023 slot gacor terbaru slot gacor terpercaya slot gacor slot gacor slot slot gacor 2023 slot 2023 slot gacor terbaru slot gacor terpercaya slot gacor

Tags

APICS E-commerce Boom and Its Disruptive Impact on US Logistics ecommerce Globally Recognized Supply Chain Certifications IIPMR Certifications International Institute for Procurement and Market Research (IIPMR) ISM logistics Next Level Purchasing procurement Supply Chain Supply Chain Industry supply chain industry in usa tariffs The changing landscape of Supply Chain Industry and how companies need to ride the tide Top 5 Supply Chain Certifications top supply chain certifications US-china trade war USA US Ports and Their Role in Global Trade US Supply Chain Industry warehousing

Trending

No Content Available
  • Antispam
  • Contact Us
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms of Use

© 2023 www.usscmc.com

No Result
View All Result
  • Home
  • Supply Chain Updates
  • Global News
  • Contact Us

© 2023 www.usscmc.com

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.

SAVE & ACCEPT